您现在的位置: 首页>> 动态 >> 正文

贝克朗悖论 贝克莱悖论

来源: 元宇宙网

提到贝克朗悖论 贝克莱悖论大家在熟悉不过了,那你是否知道贝克朗悖论 贝克莱悖论吗?快和小编一起去了解一下吧!

今天来聊聊关于贝克朗悖论,贝克莱悖论的文章,现在就为大家来简单介绍下贝克朗悖论,贝克莱悖论,希望对各位小伙伴们有所帮助。

1、数学史上把贝克莱的问题称之为“贝克莱悖论”。


(资料图)

2、笼统地说,贝克莱悖论可以表述为“无穷小量究竟是否为0”的问题:就无穷小量在当时实际应用而言,它必须既是0,又不是0。

3、但从形式逻辑而言,这无疑是一个矛盾。

4、后来,德国数学家魏尔斯特拉斯给出更为完善的我们目前所使用的“ε-δ ”方法。

5、另外,在柯西的努力下,连续、导数、微分、积分、无穷级数的和等概念也建立在了较坚实的基础上。

6、不过,在当时情况下,由于实数的严格理论未建立起来,所以柯西的极限理论还不可能完善。

7、  柯西之后,魏尔斯特拉斯、戴德金、康托尔各自经过自己独立深入的研究,都将分析基础归结为实数理论,并于七十年代各自建立了自己完整的实数体系。

8、魏尔斯特拉斯的理论可归结为递增有界数列极限存在原理;戴德金建立了有名的戴德金分割;康托尔提出用有理“基本序列”来定义无理数。

9、1892年,另一个数学家创用“区间套原理”来建立实数理论。

10、由此,沿柯西开辟的道路,建立起来的严谨的极限理论与实数理论,完成了分析学的逻辑奠基工作。

11、数学分析的无矛盾性问题归纳为实数论的无矛盾性,从而使微积分学这座人类数学史上空前雄伟的大厦建在了牢固可靠的基础之上。

12、重建微积分学基础,这项重要而困难的工作就这样经过许多杰出学者的努力而胜利完成了。

13、微积分学坚实牢固基础的建立,结束了数学中暂时的混乱局面,同时也宣布了第二次数学危机的彻底解决。

相信通过贝克莱悖论这篇文章能帮到你,在和好朋友分享的时候,也欢迎感兴趣小伙伴们一起来探讨。

相关新闻
贝克朗悖论 贝克莱悖论

今天来聊聊关于贝克朗悖论,贝克莱悖论的文章,现在就为大家来简单介绍下贝克朗悖论,贝克莱悖论,希望对各

芳华是哪一年上映的

芳华是2017年上映的。《芳华》是由浙江东阳美拉传媒有限公司出品的剧情片,由冯小刚执导,严歌苓编剧,黄轩